Q) What is the square root of the complex number 5+12i ?
A)
z = 5 + 12 i
z = 13 (5/13 + 12/13 i)
z = 13 (cosQ + i.sinQ)
cosQ = 5/13 ; sinQ = 12/13
Using DeMoivre's theorem:
z^(1/2) = +- sqrt (13) * (cos(Q/2)+ i.sin(Q/2) )
z^(1/2) = +- sqrt (13) * [ rt ( (cosQ + 1)/2) + i.rt ( (1 - cosQ)/2) ]
z^(1/2) = +- sqrt (13) * [ rt (9/13) + i.rt ( 4/13) ]
z^(1/2) = +- sqrt (13) * [ 3/rt(13) + i.2/rt(13) ]
z^(1/2) = +- ( 3 + 2i)
________________________________________________________
Monday, August 11, 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment