Q) Let z be a complex number ,then the minimum value of |z-2|+|z-3|+|2z-9| is ?
A) |z-2|+|z-3|+|2z-9|
Let z = a + ib
|z-2|+|z-3|+|2z-9|
= sqrt [ (a-2)^2 + b^2 ] + sqrt [ (a-3)^2 + b^2 ] + sqrt [ (2a - 9)^2 + 4b^2 ]
for minimising, b^2 will be 0.
= sqrt [ (a-2)^2 ] + sqrt [ (a-3)^2 ] + sqrt [ (2a - 9)^2 ]
= |a-2| + |a-3| + |2a - 9|
if seeing first two terms, a - 3> 0 then a > 3
then |2a - 9| will be 9 - 2a
= a - 2 + a - 3 + 9 - 2a
= 4
________________________________________________________
Monday, May 19, 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment