Q) If the arithmetic mean of two numbers 'a' and 'b' is 'n' times their harmonic mean, find a/b in terms of 'n'.

A) AM = n. HM

(a+b) / 2 = n. [2ab/(a+b)]

a^2 + b^2 + 2ab = 4*n*ab

(a+b)^2 = 4*n*ab

(a/b + 1)^2 = 4*n*a/b

Let a/b = x

(x + 1)^2 = 4nx

x^2 + 1 + 2x - 4nx = 0

x^2 + x(2-4n) + 1 = 0

x = 4n-2 +- sqrt(16n^2 + 4 - 16n -4) / 2

x = 4n-2 +- 4.sqrt(n^2 - n) / 2

x = 2n - 1 +- 2.sqrt (n^2 - n)

OR

a/b = 2n - 1 +- 2.sqrt (n^2 - n)

________________________________________________________

## Saturday, November 1, 2008

Subscribe to:
Post Comments (Atom)

## 1 comment:

Hi

You have a nice blog here!

In case you are interested in chess:

My site:

http://www.chess.f1.cc

Im happy to do link exchange with your blog also...

Best regards,

Chessgambiter

Post a Comment